Creating In Silico Interactomes

- Tony Chiang
- Denise Scholtens
- Robert Gentleman
Objectives

- Define interactomes
 - Biological and in silico
- Describe the process of construction
- Relate the data structure
 - How this structure is comprehensive to detailing the data
 - Why this structure is good for some statistical modeling
- Simple examples in using the interactome
- Future Work
Introduction and Background

● Basic Terminology
 – Protein Complex
 ● Group of 2 or more associated proteins
 ● Conduct some biological process
 – Protein Complex Interactome
 ● Coordinated set of protein complexes
 ● Specific to each cell or tissue type
 ● Variable over environmental conditions
Graph Theoretic Representation

- **Hyper-graph**
 - Generalization of ordinary graph
 - Vertex set, \(V \), is the collection of unique proteins
 - Let \(|V| = n \)
 - Hyper-edge, \(E \), is the collection of unique protein complexes
 - Then \(|E| \leq 2^n - (n+1) \)

- **Interactome ↔ Hyper-graph**
 - Most protein complex identification experiments occur in some biological interactome
In Silico Interactome

- Collection of estimated protein complexes representing an in silico model organism
 - The ISI is a simulated organism with which we can conduct computational experiments
- ISI is modeled after biological interactomes
- Storage of the ISI
 - Incidence Matrix Representation of the Hyper-Graph
 - Rows indexed by the vertices (expressed proteins)
 - Columns indexed by the hyper-edges (complexes)
 - Incidence is equivalent to membership
Interactome to Incidence Matrix

<table>
<thead>
<tr>
<th>Complex1</th>
<th>Complex2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein1</td>
<td>1</td>
</tr>
<tr>
<td>Protein2</td>
<td>1</td>
</tr>
<tr>
<td>Protein3</td>
<td>1</td>
</tr>
<tr>
<td>Protein4</td>
<td>0</td>
</tr>
</tbody>
</table>
Why hyper-graph representation

The hyper-graph representation encapsulates more information than a graph representation.

We look at the example of PP2A I, II, III

By example, we show why protein-protein interaction graphs and co-membership graphs cannot incorporate protein membership information
Neither graph can determine Protein Complex Membership
A Hyper-Graph (Forgive me) details protein membership, co-membership, but not interaction data.
Constructing the ISI

- Presently, the simulated model organism is based on Saccharomyces cerevisiae
- Constructing the in silico interactome
 - Collecting protein complex composition data
 - Gene Ontology
 - MIPS
 - High Through-Put Affinity Purification - Mass Spectrometric Experimentation
 - Protein Complex Estimation via apComplex
ISI - Limitations

- Comprehensive
 - It does not contain an exhaustive list of all protein complexes since it reflects known biology

- Definitive
 - It contains mostly estimated protein complexes via both low and high through-put technologies

- Meant to replace experimental de novo research
 - It cannot give insight to unknown biological complexes and interactomes
ISI - Benefits

- **Dynamic**
 - It can be updated and modified as new data is discovered and old data is revised
- **Simplified**
 - Redundancies from different data sources can be eliminated as well as irrelevant protein complexes
- **Versatile**
 - An ISI can be modeled after any organism from yeast to mice to men
Why build in silico interactomes

- Reasons to build valid in silico interactomes:
 - Provides one single data structure with which to conduct in silico experiments
 - Provides tool with which simulated wet-lab experiments can be conducted
 - Use in the generation of multiple data sets
 - Develop tools and strategy for small scale experiments
 - Study of perturbation in networks
 - Effects of varying sampling paradigms on large, non-random networks
Integrating Data and Deriving Statistics

In Silico Interactome

Computational Statistics
In Silico Interactome for Yeast - ScISI

- Computational parsing data from GO and MIPS
 - Term mining
 - [Cc]omplex
 - Suffix “-ase” (e.g. RNA polymerase II)
 - Suffix “-some” (e.g. ribosome)
- Manual parsing resultant protein complexes
- Collecting estimates from apComplex
 - Experiments
 - Gavin et al. (2002, 2006*)
 - Ho et al. (2002)
 - Krogan et al. (2004)
ScISI - a model example

- In silico S. cerevisiae
 - 1661 unique expressed proteins
 - 734 distinct protein complexes

- Basic statistical profile
 - Complex
 - Cardinality range = [2,57]
 - Median cardinality = 4
 - Mean cardinality = 5.98
 - Protein
 - Membership range = [1,31]
 - Median membership = 1
 - Mean membership = 2.64
In Silico experiments on ScISI

- Determining protein complex structures
 - Let A be the incidence matrix of ScISI
 - Then $[A^T]_{ij}$ counts the number of complexes to which protein i and protein j belong, that is how many complexes these two proteins share co-membership
 - Transformation gives a measure of protein affiliation but not direct binary interaction
Graphical representation of in silico experiments

- We make use of the equivalence of hyper-graphs to bi-partite graph
 - Equivalence is determined by letting the set of hyper-edges be the second set of nodes.

- The operation $A A^T$ is a contraction on the protein complex nodes of the bi-partite graph
 - This process takes us from protein complex membership to protein-protein complex co-membership
Bi-partite Graph: Protein Complex Membership

Ordinary Graph: Protein-Protein Complex Co-Membership
Where to from here?

- Let’s re-iterate the 5 reasons to build valid in silico interactomes:
 - Provides tool with which simulated wet-lab experiments can be conducted
 - Use in the generation of multiple data sets
 - Develop tools and strategy for small scale experiments
 - Study of perturbation in networks
 - Effects of varying sampling paradigms on large, non-random networks

- All 5 of which are still open ended…
Future Direction

● An interesting question…
 – Many of the protein complexes are estimates obtained from Affinity Purification - Mass Spectrometry experiments
 – Can we validate these estimates?
 ● Each interactome built needs to be validated before conducting computational experiments
 – We present two different methods to validate the interactomes.
Validating ISI

- Using direct binary interaction data to verify protein complex composition
 - Necessary and sufficient condition is that induced interaction graph be connected on the sub-set of proteins in each protein complex

- Hard to verify
 - Binary interaction data is sparse
 - Error Rates are extremely high
 - There is a need to decipher between true negative interactions between two proteins and un-tested interactions between two proteins
 - Induced interaction graph is almost always disconnected
Validating ISI

- Simulation Models
 - Simulate the AP-MS technology and derive data-sets on which we can apply estimation algorithm.
 - Determine how effective estimation algorithm based on statistical significance
 - Compare with other estimation algorithms